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Abstract— Independent mobility is core to being able to per-form 
activities of daily living by oneself. However, powered wheelchairs are 
not an option for a large number of people who are unable to use 
conventional interfaces, due to severe motor–disabilities. For some of 
these people, non–invasive brain– computer interfaces (BCIs) offer a 
promising solution to this interaction problem and in this article we 
present a shared control architecture that couples the intelligence and 
desires of the user with the precision of a powered wheelchair. We 
show how four healthy subjects are able to master control of the 
wheelchair using an asynchronous motor–imagery based BCI protocol 
and how this results in a higher overall task performance, compared 
with alternative synchronous P300–based approaches. 
Keywords— BCI, Wheelchair, Robotic Architecture, Brain 
Mapping 

 
I. INTRODUCTION 

Millions of people around the world suffer from mobility impairments 
and hundreds of thousands of them rely upon powered wheelchairs to 
get on with their activities of daily living [1]. However, many patients are 
not prescribed powered wheelchairs at all, either because they are 
physically unable to control the chair using a conventional interface, or 
because they are deemed incapable of driving safely [2].Consequently, 
it has been estimated that between 1.4 and 2.1 million wheelchair 
users might benefit from a smart powered wheelchair, if it were able to 
provide a degree of additional assistance to the driver [3]. In our work 
with brain–actuated wheelchairs, we target a population who are - or 
will become - unable to use conventional interfaces, due to severe 
motor–disabilities. Noninvasive brain–computer interfaces (BCIs) offer 
a promising new interaction modality that does not rely upon a fully 
functional peripheral nervous system to mechanically interact with the 
world and instead uses the brain activity directly. However, mastering 
the use of a BCI, like with all new skills, does not come without a few 
challenges. Spontaneously performing mental tasks to convey one’s 
intentions to a BCI can require a high level of concentration, so it would 
result in a fantastic mental workload, if one had to precisely control 
every movement of the wheelchair. Furthermore, due to the noisy 
nature of brain signals, we are currently unable to achieve the same 
information rates that you might get from a joystick, which would make 
it difficult to wield such levels of control even if one wanted to. 
Thankfully, we are able to address these issues through the use of 
intelligent robotics, as will be discussed. Our wheelchair uses the 
notion of shared control to couple the intelligence of the user with the 
precise capabilities of a robotic wheelchair, given the context of the 
surroundings [4]. It is this synergy, which begins to make brain–
actuated wheelchairs a potentially viable assistive technology of the 
not–so–distant future. In this paper we describe the overall robotic 
architecture of our brain–actuated wheelchair. We begin by discussing 
the brain computer interface, since the human is central to our design 
philosophy. Then, the wheelchair hardware and modifications are 
described, before we explain how the shared control system fuses the 
multiple information sources in order to decide how to execute 
appropriate manoeuvres in cooperation with the human operator. 
Finally, we present the results of an experiment involving four healthy 
subjects and compare them with those reported on other brain–
actuated wheelchairs. We find that our continuous control approach 
offers a very good level of performance, with experienced BCI 
wheelchair operators achieving a comparable performance to that of a 
manual benchmark condition. 
 

II. BRAIN COMPUTER INTERFACES (BCI) 
The electrical activity of the brain can be monitored in real time using 
an array of electrodes, which are placed on the scalp in a process 
known as electroencephalography (EEG).In order to bypass the 
peripheral nervous system, we need to find some reliable correlates in 
the brain signals that can be mapped to the intention to perform 
specific actions. In the next two subsections, we first discuss the 

philosophy of different BCI paradigms, before explaining our chosen 
asynchronous implementation for controlling the wheelchair. 
A. The BCI Philosophy 
Many BCI implementations rely upon the subject attending to visual 
stimuli, which are presented on a screen. Consequently, researchers 
are able to detect a specific event–related potential in the EEG, known 
as the P300, which is exhibited 300 ms after a rare stimulus has been 
presented. For example, in one P300–based BCI wheelchair, the user 
is presented with a 3*3 grid of possible destinations from a known 
environment (e.g. the bathroom, the kitchen etc., within the user’s 
house), which are highlighted in a standard oddball paradigm [5]. The 
user then has to focus on looking at the particular option to which they 
wish to drive. Once the BCI has detected their intention, the wheelchair 
drives autonomously along a predefined route and the user is able to 
send a mental emergency stop command (if required) with an average 
of 6 seconds delay. Conversely, another BCI wheelchair, which is also 
based upon the P300 paradigm doesn’t restrict the user to navigating 
in known, pre–mapped environments. Instead, in this design, the user 
is able to select subgoals (such as close left, far right, mid–ahead etc.) 
from an augmented reality matrix superimposed on a representation of 
the surrounding environment [6].To minimise errors (at the expense of 
command delivery time), after a subgoal has been pre–selected, the 
user then has to focus on a validation option. This gives users more 
flexibility in terms of following trajectories of their choice, however, the 
wheelchair has to stop each time it reaches the desired sub–goal and 
wait for the next command (and validation) from the user. 
Consequently, when driving to specific destinations, the wheelchair 
was stationary for more time than it was actually moving (as can be 
seen in Fig. 8 of [6]). Our philosophy is to keep as much authority with 
the users as possible, whilst enabling them to dynamically generate 
natural and efficient trajectories. Rather than using external stimuli to 
evoke potentials in the brain, as is done in the P300 paradigm, we 
allow the user to spontaneously and asynchronously control the 
wheelchair by performing a motor imagery task. Since this does not 
rely on visual stimuli, it does not interfere with the visual task of 
navigation. Furthermore, when dealing with motor–disabled patients, it 
makes sense to use motor imagery, since this involves a part of the 
cortex, which may have effectively become redundant; i.e. the task 
does not interfere with the residual capabilities of the patient. In our 
motor imagery (MI) paradigm, the user is required to imagine the 
kinaesthetic movement of the left hand, the right hand or both feet, 
yielding three distinct classes. During the BCI training process, we 
select the two most discriminable classes to provide a reliable mapping 
from the MI tasks to control actions (e.g imagine left hand movements 
to deliver a turn left command and right hand movements to turn 
right).To control our BCI wheelchair, at any moment, the user can 
spontaneously issue a high–level turn left or turn right command. When 
one of these two turning commands is not delivered by the user, a third 
implicit class of intentional non–control exists, whereby the wheelchair 
continues to travel forward and automatically avoid obstacles where 
necessary. Consequently, this reduces the user’s cognitive workload. 
The implementation will be discussed in Section IV-D. 
 
B. The BCI Implementation  
Since we are interested in detecting motor imagery, we acquire 
monopolar EEG at a rate of 512 Hz from the motor cortex using 16 
electrodes (see Fig. 1). The electrical activity of the brain is diffused as 
it passes through the skull, which results in a spatial blur of the signals, 
so we apply a Laplacian filter, which attenuates the common activity 
between neighbouring electrodes and consequently improves Fig. 1: 
The active electrode placement over the motor cortex for the 
acquisition of EEG data, based on the International 10-20 system 
(nose at top). our signal to noise ratio. After the filtering, we estimate 
the power spectral density (PSD) over the last second, in the band 4–
48 Hz with a 2 Hz resolution [8]. It is well know that when one performs 
motor imagery tasks, corresponding parts of the motor cortex are 
activated, which, as a result of event related desynchronisation, yields 
a reduction in the muband power (8–13 Hz) over these locations (e.g. 
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the right hand corresponds to approximately C1 and the left hand to 
approximately C2 in Fig. 1). In order to detect these changes, we 
estimate the PSD features every 62.5 ms (i.e. 16 times per second) 
using the Welch method with 5 overlapped (25%) Hanning windows of 
500ms. Every person is different, so we have to select the features that 
best reflect the motor–imagery task for each subject. Therefore, 
canonical variate analysis (CVA) is used to select subject–specific 
features that maximize the separability between the different tasks and 
that are most stable (according to cross validation on the training data) 
[9]. Decisions with a confidence on the probability distribution that are 
below a given rejection threshold are filtered out. Finally, evidence 
about the executed task is accumulated using an exponential 
smoothing probability integration framework [11]. This helps to prevent 
commands from being delivered accidentally. 

 
III. WHEELCHAIR HARDWARE 

Our brain controlled wheelchair is based upon a commercially available 
mid–wheel drive model by Invacare that we have modified. First, we 
have developed a remote joystick module that acts as an interface 
between a laptop computer and the wheelchair’s CANBUS–based 
control network. This allows us to control the wheelchair directly from a 
laptop computer. Second, we have added a pair of wheel–encoders to 
the central driving wheels in order to provide the wheelchair with 
feedback about its own motion. Third, an array of ten sonar sensors 
and two webcams have been added to the wheelchair to provide 
environmental feedback to the controller. Fourth, we have mounted an 
adjustable 8” display to provide visual feedback to the user. Fifth, we 
have built a power distribution. As shown in the figure 2 below, the 
wheelchair’s knowledge f the environment is acquired by the fusion of 
complementary sensors and is represented as a probabilistic 
occupancy grid. The user is given feedback about the current status of 
the BCI and about the wheelchair’s knowledge of the environment. 
Unit, to hook up all the sensors, the laptop and the display to the 
wheelchair’s batteries. The complete BCI wheelchair platform is shown 
in Fig. 2. The positions of the sonars are indicated by the white dots in 
the centre of the occupancy grid, whereas the two webcams are 
positioned forward–facing, directly above each of the front castor 
wheels. 

Fig. 2: The complete brain–actuated wheelchair. 
 

A.Wheel–encoders 
The encoders return 128 ticks per revolution and are geared up to the 
rim of the drive wheels, resulting in a resolution of 2.75*10^3 metres 
translation of the inflated drive wheel per encoder tick. We use this 
information to calculate the average velocities of the left and right 
wheels for each time–step. Not only is this important feedback to 
regulate the wheelchair control signals, but we also use it as the basis 
for dead reckoning (or estimating the trajectory that has been driven). 
We apply the simple differential drive model derived in [12]. To ensure 
that the model is always analytically solvable, we neglect the 
acceleration component. In practice, since in this application we are 
only using the odometry to update a 6m*6m map, this does not prove 
to be a problem. However, if large degrees of acceleration or slippage 
occur and the odometry does not receive any external correcting 
factors, the model will begin to accumulate significant errors [12]. 

 
IV. SHARED CONTROL ARCHITECTURE 

The job of the shared controller is to determine the meaning of the 
vague, high–level user input (e.g. turn left, turn right, keep going 
straight), given the context of the surrounding environment [4]. We do 
not want to restrict ourselves to a known, mapped environment - since 
it may change at any time (e.g. due to human activities) - so the 
wheelchair must be capable of perceiving its surroundings. Then, the 
shared controller can determine what actions should be taken, based 
upon the user’s input, given the context of the surroundings. The 
overall robotic shared control architecture is depicted in Fig. 3 and we 
discuss the perception and planning blocks of the controller over then 
next few subsections. 

 
 
Fig. 3: The user’s input is interpreted by the shared controller given the 
context of the surroundings. The environment is sensed using a fusion 
of complementary sensors, then the shared controller generates 
appropriate control signals to navigate safely, based upon the user 
input and the occupancy grid. 
 
A. Perception 
Unlike for humans, perception in robotics is difficult. To begin with, 
choosing appropriate sensors is a not a trivial task and tends to result 
in a trade–off between many issues, such as: cost, precision, range, 
robustness, sensitivity, complexity of post-processing and so on. 
Furthermore, no single sensor by itself seems to be sufficient. For 
example, a planar laser scanner may have excellent precision and 
range, but will only detect a table’s legs, reporting navigable free space 
between them. Other popular approaches, like relying solely upon 
cheap and readily available sonar sensors have also been shown to be 
unreliable for such safety–critical applications [14]. To overcome these 
problems, we propose to use the synergy of two low–cost sensing 
devices to compensate for each other’s drawbacks and complement 
each other’s strengths. Therefore, we use an array of ten close–range 
sonars, with a wide detection beam, coupled with two standard off–
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the–shelf USB webcams, for which we developed an effective obstacle 
detection algorithm. We then fuse the information from each sensor 
modality into a probabilistic occupancy grid, as will be discussed in 
Section IV-C.  
 
B. Computer Vision–Based Obstacle Detection 
The obstacle detection algorithm is based on monocular image 
processing from the webcams, which ran at 10Hz. The concept of the 
algorithm is to detect the floor region and label everything that does not 
fall into this region as an obstacle; we follow an approach similar to that 
proposed in [13], albeit with monocular vision, rather than using a 
stereo head. The first step is to segment the image into constituent 
regions. For this, we use the watershed algorithm, since it is fast 
enough to work in real–time [15]. We take the original image (Fig 4a) 
and begin by applying the well–known Canny edge–detection, as 
shown in Fig. 4b. A distance transform is then applied, such that each 
pixel is given a value that represents the minimum Euclidean distance 
to the nearest edge. This results in the relief map shown in Fig. 4c, with 
a set of peaks (the farthest points from the edges) and troughs (the 
edges themselves). The watershed segmentation algorithm itself is 
applied to this relief map, using the peaks as markers, which results in 
an image with a (large) number of segments (see Fig. 4d). To reduce 
the number of segments, adjacent regions with similar average colours 
are merged. Finally, the average colour of the region that has the 
largest number of pixels along the base of the image is considered to 
be the floor. All the remaining regions in the image are classified either 
as obstacles or as navigable floor, depending on how closely they 
match the newly–defined floor colour. The result is shown in Fig. 4e, 
where the detected obstacles are highlighted in red. Since we know the 
relative position of the camera and its lens distortion parameters, we 
are able to build a local occupancy grid that can be used by the shared 
controller, as is described in the following section. 
 
C. Updating the Occupancy Grid 
At each time–step, the occupancy grid is updated to include the latest 
sample of sensory data from each sonar and the output of the 
computer vision obstacle detection algorithm. We extend the histogram 
grid construction method described in [16], by fusing information from 
multiple sensor types into the same occupancy grid. For the sonars, we 
consider a ray to be emitted from each device along its sensing axis. 
The likelihood value of each occupancy grid cell that the ray passes 
through is decremented, whilst the final grid cell (at the distance value 
returned by the sonar) is incremented. The weight of each increment 
and decrement is determined by the   confidence we have for each 
sensor at that specific distance. For example, the confidence of the 
sonar readings being correct in the range 3 cm to 50 cm is high, 
whereas outside that range it is zero (note that the sonars are capable 
of sensing up to 6 m, but given that they are mounted low on the 
wheelchair, the reflections from the ground yield a practical limit of 0.5 
m). Similarly, the computer vision algorithm only returns valid readings 
for distances between 0.5m and 3m. using this method, multiple 
sensors and sensor modalities can be integrated into the planning grid. 
As the wheelchair moves around the environment, the information from 
the wheel–encoder based dead–reckoning system is used to translate 
and rotate the occupancy grid cells, such that the wheelchair remains 
at the centre of the map. In this way, the cells accumulate evidence 
over time from multiple sensors and sensor modalities. As new cells 
enter the map at the boundaries, they are set to “unknown”, or 50% 
probability of being occupied, until new occupancy evidence (from 
sensor readings) becomes available. Figure above shows the 
obstacle–detection algorithm is based upon a computer vision 
approach prosed in [13], but adapted for monocular vision. The floor is 
deemed to be the largest region that touches the base of the image, 
yet does not cross the horizon. In the current implementation, the user 
is not able to stop the chair in free space; instead the chair will stop 
when it has docked to a potential target. In future this control strategy 
could easily be extended to include an additional BCI command (or 
another biosignal, in the case of a hybrid approach) to implement an 
explicit stop signal. 
 

V. EVALUATION 
We demonstrate that both natıve and experienced BCI wheelchair 
operators are able to complete a navigation task successfully. 
Furthermore, unlike in P300 based systems, not only was the user in 
continuous spontaneous control of the wheelchair, but the resultant 
trajectories were smooth and intuitive (i.e. no stopping, unless there 
was an obstacle, and users could voluntarily control the motion at all 
times).  
 

A.Experiment Protocol 
As a benchmark, the subject was seated in the wheelchair and was 
instructed to perform an online BCI session, before actually driving. In 
this online session, the wheelchair remained stationary and the 
participant simply had to perform the appropriate motor imagery task to 
move a cursor on the wheelchair screen in the direction indicated by a 
cue arrow. There was a randomized balanced set of 30 trials, 
separated by short resting intervals, which lasted around 4–5 mins, 
depending on the performance of the subject. After the online session, 
participants were given 15–30 minutes to familiarise themselves with 
driving the wheelchair: Trajectories followed by subject s3 on one of 
the manual benchmark trials (left), compared with one of the BCI trials 
(right). These trajectories were reconstructed from odometry using the 
independent reconstruction method [19]. Using each of the control 
conditions: a two button manual input, which served as a benchmark, 
and the BCI system. Both input paradigms allowed the users to issue 
left and right commands at an inter–trial interval of one second. The 
actual task was to enter a large open–plan room through a doorway 
from a corridor, navigate to two different tables, whilst avoiding 
obstacles and passing through narrow openings (including other non–
target tables, chairs, ornamental trees and a piano), before finishing by 
reaching a second doorway exit of the room when approaching the 
target tables, the participants were instructed to wait for the wheelchair 
to finish docking to the table, then once it had stopped they should 
issue a turning command to continue on their journey. The trials were 
counter–balanced, such that users began with a manual trial, then 
performed two BCI trials and finished with another manual trial. 
 
B. Results and Discussion 
All subjects were able to achieve a remarkably good level of control in 
the stationary online BCI session, as can be seen in Table I. 
Furthermore, the actual driving task was completed successfully by 
every subject, for every run and no collisions occurred. A comparison 
between the typical trajectories followed under the two conditions is 
shown in Fig 5. The statistical tests reported in this section are paired 
Student’s tests. A great advantage that our asynchronous BCI 
wheelchair brings, compared with alternative approaches like the P300 
based chairs, is that the driver is in continuous control of the 
wheelchair. This means that not only does the wheelchair follow natural 
trajectories, which are determined in real time by the user (rather than 
following predefined ones, like in [5]), but also that the chair spends a 
large portion of the navigation time actually moving. This is not the 
case with some state–of–the–art P300–controlled wheelchairs, where 
the wheelchair has to spend between 60% and 80% of the manoeuvre 
time stationary, waiting for input from the user. In terms of path 
efficiency, there was no significant difference (p = 0:6107) across 
subjects between the distance travelled in the manual benchmark 
condition (43.1*8.9 m) and that in the BCI condition (44.9*4.1 m). 
Although the actual environments were different, the complexity of the 
navigation was comparable to that of the tasks investigated on a P300 
based wheelchair in [6]. In fact, the average distance travelled for our 
BCI condition (44.9*4.1 m), was greater than that in the longest task of 
[6] (39.3*1.3 m), yet on average our participants were able to complete 
the task in 417.6*108.1 s, which was 37% faster than the 659*130 s 
reported in [6]. This increase in speed might (at least partly) be 
attributed to the fact that our wheelchair was not stationary for such a 
large proportion of the trial time. Across subjects, it took an average of 
160.0 s longer to complete the task under the BCI condition (see Fig. 5, 
p = 0:0028). On brighter days, some shadows and reflections from the 
shiny wooden floor caused the wheelchair to be cautious and slow 
down earlier than on dull days, until the sonars confirmed that actually 
there was not an obstacle present. Therefore, it makes more sense to 
do a within subjects comparison, looking at the performance 
improvement or degradation on a given day, rather than comparing 
absolute performance values between subjects on different days. From 
Figure below it can be seen that for the inexperienced users (s1 and 
s2), there was some discrepancy in the task completion time between 
the benchmark manual condition and the BCI condition. However, for 
the experienced BCI wheelchair users (s3 and s4), the performance in 
the BCI condition is much   closer to the performance in the manual 
benchmark condition. This is likely to be due to the fact that performing 
a motor imagery task, whilst navigating and being seated on a moving 
wheelchair, is much more demanding than simply moving a cursor on 
the screen (c.f. the stationary online BCI session of Table I). In 
particular, aside from the increased workload, when changing from a 
task where one has to deliver a particular command as fast as possible 
following a cue, to a task that involves navigating asynchronously in a 
continuous control paradigm, the timing of delivering commands 
becomes very important. In order to drive efficiently, the user needs to 
develop a good mental model of how the entire system behaves (i.e. 
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the BCI, coupled with the wheelchair) [20].Clearly, through their own 
experience, subjects s3 and s4 had developed such mental models 
and were therefore able to TABLE I: Confusion matrices of the left and 
right classes and accuracy for the online session, for each subject, 
before actually controlling the wheelchair, anticipate when they 
     

 
 
 

 
Fig. 5: The average time required to complete the task for each 
participant in a benchmark manual condition (left bars) and the BCI 
condition (right bars). The wheelchair was stationary, waiting user 
input, only for a small proportion of the trial. 
 
should begin performing a motor imagery task to ensure that the 
wheelchair would execute the desired turn at the correct moment. 
Furthermore, they were also more experienced in refraining from 
accidentally delivering commands (intentional non–control) during the 
periods where they wanted the wheelchair to drive straight forwards 
and autonomously avoid any obstacles. Conversely, despite the good 
online BCI performance of subject’s s1 and s2, they had not developed 
such good mental models and were less experienced in controlling the 
precise timing of the delivery of BCI commands. Despite this, the use 
of shared control ensured that all subjects, whether experienced or not, 
could achieve the task safely and at their own pace, enabling 
continuous mental control over long periods of time (>400 s, almost 7 
minutes). gives users greater flexibility and authority over the actual 
trajectories driven, since it allowed users to interact with the wheelchair 
spontaneously, rather than having to wait for external cues as was the 
case with [5], [6]. Moreover, combining our BCI with a shared control 
architecture allowed users to dynamically produce intuitive and smooth 
trajectories, rather than relying on predefined routes [5] or having to 
remain stationary for the majority of the navigation time [6]. Although 
there was a cost in terms of time for inexperienced users to complete 
the task using the BCI input compared with a manual benchmark, 
experienced users were able to complete the task in comparable times 
under both conditions. This is probably as a result of them developing 
good mental models of how the coupled BCI–shared control system 
behaves. In summary, the training procedure for spontaneous motor 
imagery–based BCIs might take a little longer than that for stimulus–
driven P300 systems, but ultimately it is very rewarding. After learning 
to modulate their brain signals appropriately, we have demonstrated 
that both experienced and inexperienced users were able to master a 
degree of continuous control that was sufficient to safely operate a 
wheelchair in a real world environment. They were always successful 
in completing a complex navigation task using mental control over long 
periods of time. One participant remarked that the motor–imagery BCI 
learning process is similar to that of athletes or musicians training to 
perfect their skills: when they eventually succeed they are rewarded 
with a great sense of self–achievement. 
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